
Drug-Drug Interaction Prediction: a Purely SMILES
Based Approach

Bri Bumgardner*, Farhan Tanvir¶, Khaled Mohammed Saifuddin¶, Esra Akbas¶

*Department of Computer Science, Rice University, Houston, TX, 77005, USA
¶Department of Computer Science, Oklahoma State University, Stillwater, OK, 74078, USA

*bb64.edu@rice.edu
¶{farhan.tanvir, khaled mohammed.saifuddin, eakbas}@okstate.edu

Abstract—A drug-drug interaction (DDI) occurs when a drug
is combined with other drug(s). DDIs have the potential to
obstruct, increase, or diminish the intended impact of a drug
or, in the worst-case scenario, induce an undesirable side effect.
While it is critical to discover DDIs during clinical trials, it
is impractical and expensive to detect all possible DDIs for
a drug. Although several computational approaches for this
problem have been developed, many of these methods need
external biomedical knowledge that makes them difficult to
generalize to drugs in early development phase. In this paper, we
propose a novel method for predicting DDIs based on the vital
chemical substructure of drugs extracted from their SMILES
strings. We construct a graph that connects drugs based on
their common functional chemical substructures. Furthermore,
we apply different well-known graph neural network (GNN)
methods to generate drug embeddings. Drug embeddings of
individual drugs are concatenated to generate features of drug
pairs. Finally, drug pair features are fed to different machine
learning (ML) classifiers for DDI prediction. We evaluate our
model on DrugBank dataset. Our result shows promising results
and our model outperforms a baseline model based on different
DDI representation creation methods.

Index Terms—Drug-drug Interaction, Link Prediction, Chem-
ical Structure, Graph Neural Network, Representation Learning

I. INTRODUCTION

Most human diseases are caused by complicated biological
processes that cannot be treated by a single drug [1], [2].
Polypharmacy, a combinatorial therapy involving concurrent
administration of many drugs, is a widely used technique for
fighting diseases [3]. On the other hand, drugs used together
may interact with each other. Drug-drug interaction (DDI)
indicates the reaction of drugs when they are taken together
with another drug(s). While DDIs may hamper, enhance, or
reduce the expected effect of either drug, they may also
cause an adverse drug reaction (ADR). DDIs account for
roughly one-third of all ADRs [4]–[6], resulting in significant
morbidity and mortality globally [7]–[9]. To mitigate the
impact of unexpected pharmacological effects, it is critical
to effectively identify potential DDIs, which can minimize
unexpected ADRs and maximize synergistic benefits when
treating a disease [10].

While the search for such side effects is normally done
during clinical testing, the limited nature of the trials and
the rarity of ADRs imply that many ADRs are undiscovered
when the pharmaceuticals reach the market. Therefore, it may

not be possible to detect all possible DDIs for a new drug
during the clinical trial, and many computational methods
have been proposed for this task. Most extant DDI predic-
tion approaches focus on combining several data sources to
gather drug properties such as similarity features, adverse or
side effects, and multi-task learning. Similarity-based methods
assume that structurally similar drugs will behave similarly
and interact with the same drugs [11]–[13]. A few works
utilize drugs’ adverse or side effect information to construct
node features or build a feature set showing relation between
drugs [14]. Several works consider DDI prediction task as
multi-task learning that integrates task or entity relatedness
during training [15], [16]. For DDI prediction, side effects
can be related to each other. These works assume that if
two side-effects are related and if any drug pairs cause
one of the side effects, they will likely cause other side
effects and further predict DDIs exploiting this relatedness.
Some computational techniques choose to combine different
embedding methods [17]–[20]. These embedding methods aim
to automatically learn effective representations for drugs as
features.

While these methods show promising results, there are
still some drawbacks. Many of these methods need external
biomedical knowledge like protein, disease, chemical struc-
ture, and genes, making difficult to generalize for drugs
in the early development phase. Also, prior works utilized
the entire chemical structure information to facilitate DDI
prediction [13], [21], [22]. However, all chemical substructures
are not significant, and drug pairs might overlap on irrelevant
chemical substructures. Therefore, it is imperative to depict
drug pairs’ relations based on vital chemical substructures.

In this paper, as a solution to these problems, we propose a
new method for DDI prediction where we learn the represen-
tation of drugs by considering only drugs’ chemical structures
and their similarities. We consider two drugs to be similar
if they have similar functional sub-structure (i.e., functional
groups) [23]. Instead of using whole chemical structures of
drugs to measure their similarities, we use frequent sub-
structures in them.

To appropriately model the structural similarity of drugs,
we represent them in a graph setting. Graph encapsulates the
intricate structure of interactions between linked objects. Ver-
tices represent objects in a network, while edges indicate the

978-1-6654-3902-2/21/$31.00 ©2021 IEEE

relationships between objects. In our graph, we consider drugs
as nodes and add an edge between drugs if they own common
frequent chemical substructures. We utilize the Explainable
Substructure Partition Fingerprint (ESPF) algorithm [24] to
extract relevant, influential frequent sub-structures from drugs’
molecular structures.

After creating the graph using extracted substructures, we
use different graph neural network (GNN) models to get
the embedding of drugs that incorporate structure similarities
and use them to create drug pairs’ features needed to train
the DDI prediction model. GNN is a structured and robust
framework for representation learning of graphs. These are
neural models that use message passing between graph nodes
to extract the dependency of nodes in graph. GNN variants
such as graph convolutional network (GCN) [25] and graph
attention network (GAT) [26] have exhibited ground-breaking
performance on a variety of deep learning tasks in recent years.
We utilize GraphSAGE [20], GCN, and GAT to generate drug
node embeddings.

Our primary contributions are summarized as follows.
• Similarity computation: Chemical substructure is a sig-

nificant aspect to measure relation and similarity among
drugs [23]. If drug pairs have similar chemical structures,
drugs are considered to be similar.

• Appropriate information extraction: We define the
relation between graphs based on important chemical
substructures while eliminating less relevant parts of
chemical structures. We utilize the ESPF algorithm to ex-
tract relevant, influential substructures and create graphs
connecting drugs based on frequent, significant chemical
substructures.

• Representation learning: To construct drug node embed-
dings that incorporate structure similarity between drugs,
we use three different graph neuural network; GCN, GAT,
and GraphSAGE. For each drug pair, we concatenate the
embeddings from its corresponding drugs and use them
as features in ML models.

• Utilizing proper accuracy measures: We perform exten-
sive experiments utilizing appropriate accuracy measures,
including precision, recall, and F1-score.

The structure of this paper is outlined as follows. First, we
present related works for DDI problem in Section II. Then,
Section III describes how we create the graph and generate
drug embeddings from the graph. Next, we describe our
experiments in Section IV, and finally, we give a conclusion
in Section V.

II. RELATED WORK

Recently, various computational models have been devel-
oped to predict DDIs. Mainly, we categorize them into three
groups: similarity-based, classification-based, and graph neural
network (GNN)-based methods.

A. Similarity-based approaches:
Similarity-based techniques are helpful in predicting DDIs

in previous research. These approaches are based on the notion

that similar drugs will interact with the same drug [11]. For
predicting DDIs, several research studies have used different
numbers and types of similarity measures [7], [11], [27],
[28]. One noteworthy study is [21], which uses a variety
of data sources to generate several local and global similarity
measures among drugs. They also admit that their dataset is
biased and imbalanced, and they design many experiments to
solve these flaws. However, the majority of these approaches
take into account limited datasets and fewer drug-centric
interactions.

B. Classification-based approaches:
In classification-based approaches, different ML models are

employed to classify and predict whether two drugs interact
or not. For supervised models, drug interactions with other
biological entities are used as features. Moreover, some re-
searchers exploit network-based features. For instance, in [29],
drug-protein interactions and drug-side effect interactions are
used to create a graph. Then they use the created graph to
generate a variety of similarity and centrality metrics used
as features in different ML models. Likewise, [14] computes
feature set based on meta-paths depicting drugs’ relation and
connecting with other biomedical entities. Afterward, various
ML algorithms are applied, and NN is superior to others
according to experimental results. [30] uses one-class SVM
and KNN to extract valid negative samples. Positive and
negative samples are then used for classification and predicting
new DDIs using labeled positive and reliable negative samples.
Then, they compared their results to those of other baseline ap-
proaches and found that their accuracy measures outperformed
other baselines. However, many classification-based methods
have a few drawbacks, such as not working for new drugs.
In our proposed method, we take the significant chemical
substructures of drugs into account. A drug pair sharing a vital
chemical substructure will likely produce a DDI, regardless of
whether or not a drug in the pair is new.

C. NN-based Approaches:
Recently, lots of research has predicted drug-related inter-

actions using NNs, especially graph neural networks. PCA
representations of drug-mono side effects and drug-protein
interactions were combined by [31]. For each drug pair, the
corresponding drug features are summed and fed to a NN. For
DDI prediction, [32] defines a neural link prediction model
as a feed-forward NN that combines node pairs’ embeddings
to represent a link.

However, drugs’ effects are not confined to the molecules
they interact with directly in the body. Instead, their impacts
are disseminated across the biological networks in which they
operate. Thus, GNNs are particularly well adapted to the study
of biological networks. [33] constructed a knowledge graph
based on protein-protein interaction, drug-drug interaction,
and drug-protein interaction. Afterward, they develop a graph
convolutional network consisting of encoding, decoding, and
model training phases for DDI prediction. [34] utilized GNN
to learn drugs and their neighborhood embedding from DDI

and the knowledge graph, consisting of interaction among
drugs, genes, and proteins. Finally, they predict potential DDIs
using binary classification. [35] predicts DDI leveraging the
molecular structure of drugs and type of side effects. Drugs are
represented as nodes comprising of atoms, with bonds among
them represented as edges. Internal messages are sent to each
other by nodes/atoms. Furthermore, atoms of different drugs
can communicate with one another via outer messages. They
calculate an attentional co-efficient for each atom pair, where
each atom belongs to a different drug.

III. METHODOLOGY

The DDI prediction task entails creating a binary class
classification model that takes the feature of two drugs as
inputs and generates an output prediction indicating whether
or not they interact. While many different types of features
are available for drugs, the Simplified Molecular Input Line-
Entry System (SMILES) strings [36] are the most common and
widely available. Therefore, in our model, we use SMILES
strings to create a drugs network and generate more com-
prehensive features of drugs using GNN. In this section, we
present our methodology for DDI predictions. System archi-
tecture of this paper is illustrated in Figure 1. Our proposed
model consists of four steps:
• Constructing the graph using SMILES strings,
• Drug representation learning from the graph,
• Creating DDI representation,
• Learning with DDI features.

A. Graph construction from SMILES strings

The SMILES string of a drug is a chemical string notation
that allows the unique identification of the drug’s chemical
structure. Among the entire drug’s molecular structure, only
a few functional sub-structures may cause the chemical re-
actions resulting in an interaction between drugs, while the
remaining substructures are less relevant and/or important for
reactions [37]. Hence, in this project we only use frequent
sub-structures of drugs. We consider that two drugs are similar
and may interact if they have similar functional sub-structures
(i.e., functional groups) [23]. By utilizing ESPF algorithm, we
extract influential frequent substructures from drugs. Then, we
create our graph based on extracted substructures. Basically,
we build an edge between two drugs if they share at least a
predefined number of sub-structures among them, and thus we
construct a drug-drug network. The analysis of the frequent
sub-structures allows us to identify the most important or
re-occurring parts of each drug, enabling us to build our
representations on these most crucial bits of information.

1) Chemical Sequential Pattern Mining: To obtain the
frequent sub-structures of the SMILES strings, we employ
the ESPF algorithm. ESPF can decompose drugs into a set
of customized sub-structures. Given the SMILES strings of
drugs as an input, ESPF discovers the frequent recurring
sub-structure set and their frequency by repeatedly pairing
reoccurring sequential tokens.

We give the ESPF algorithm in Algorithm 1. It starts with
a list of tokens as amino acids and atoms in SMILES strings.
Then, with considering every pair of the element in this list,
it extracts the frequency of these pairs in SMILES strings,
and if their frequency is larger than a given threshold, they
are converted to a frequent substructure and added to the list.
This continues until there is no pair with a frequency higher
than the threshold or size of the list exceeds the maximum
size.

Algorithm 1: Explainable Substructure Partition Fin-
gerprint (ESPF)
Input: A set of initial SMILES tokens S as atoms

and bonds, a set of tokenized SMILES strings T , a
frequency threshold θ, and a size threshold l for S.

for t = 1 . . . , l do
(A,B), FREQ ← scan T ; /* (A,B) is the
frequentest consecutive tokens. */

if FREQ < θ then
break ; /* (A,B)’s frequency lower
than threshold */

end
T ← find (A,B) ∈ T , replace with (AB) ;
/* update T with the combined
token (AB) */
S ← S ∪ (AB) ; /* add (AB) to the
token vocabulary set S */

end
Output: T , the updated tokenized proteins/drugs; S,

the updated token vocabulary set.

After extracting frequent sub-structures from SMILE
strings, we use them to decompose drugs into a sequence
of frequent sub-structures. For a given string, hypothetically,
there are several ways to break this string into pieces depend-
ing on the vocabulary of sub-structures.

For example, for a given string “Unexplainable” and the
given sub-structure set is

{un, plain, une, able, explain, lain, unex, ex, x, ab, bl, le.}

there are several ways to break the string down, such as

Un-ex-plain-able
Un-ex-plain-ab-le
Une-x-plain-able
Une-x-plain-ab-le
Un-explain-able.

Given this variety of possible solutions, we approach the
tokenization of the SMILES string set problem by first sorting
our vocabulary of sub-structures into a list from most to least
frequently appearing. For each SMILES string, we partition in
order of frequency with starting from the highest frequency. In
the possible case that any small pieces of the SMILES strings
do not become part of a pairing, we leave these as-is instead
of removing them from the strings. Example of a partitioned
SMILES string of a drug;

Fig. 1. System Architecture of our method

DB00224: CC(C)(C) NC(=O)C@@H1
CN(C c2ccc n c2) CCN 1C C@@H(O)C
C@@H(Cc1ccccc1) C(=O)N C@H1
c2ccccc2 CC@H1O

2) Graph Creation: After getting the partitioned SMILES
strings, we create a weighted graph whose nodes are drugs
and add edges between drug nodes if they share a certain
number S of sub-structures, which we call the graph’s S-value.
Depending on the S-value, the number of edges changes in the
graph. The weight for each edge of the graph is the number
of sub-structures that the two-drug nodes shared.

B. Drug Representation learning via Graph

To obtain our representations for the DDI’s, we first apply
GNN to the graph to learn the node embeddings (each node
representing a drug). GNN is a multilayer NN that works
with graph structures directly and can generate embeddings
of nodes by utilizing global and local structures from graphs
[38]. In GNN, information propagates across the edges in
the network [39]. GNN can be viewed as a message-passing
algorithm where node representations are iteratively computed
through passing, transforming, and aggregating the features
of their neighbor nodes using a differentiable aggregation
function [40], [20].

A layer of a GNN can be expressed as

Hi+1 = f(AHiW i)

where A is an adjacency matrix of a graph G, H(i) ∈ Rn×m

is a matrix containing node embeddings computed at layer i,
Wi ∈ Rm×k is the trainable weight matrix at layer i that is
shared with all vertices in the network, and f is a propagation
function that takes adjacency matrix, trainable weight and
previous layer node presentations Hi−1 to produce current
layer’s node representations.

There are several ways to implement the propagation func-
tion f(), among which GCN is one of the most popular

variants of GNN where f() is basically a combination of
linear feature transformations, aggregations, and point-wise
nonlinearities [25]. Each node in GCN is represented by
averaging the features of its neighbors as well as its own.
Kipf et al. [25] use a spectral method to create propagation
rules that sum together information from the previous layer to
produce the features of the following layer. Expression of a
two-layer GCN is

H1 = Relu(ZH0W 0),

H2 = softmax(ZH1W 1)

where normalized symmetric adjacency matrix, Z =
D̂−1/2ÂD̂−1/2, and Â stands for adjacency matrix with 1s
on its diagonal for the self-loops. D̂ is the degree matrix of
adjacency matrix Â, where D̂ii =

∑
j Âij. H0 = X , where X

is the initial features of nodes and W 0, W 1 are the trainable
weights.

However, GCN is inherently transductive; it requires all
the nodes to be present during training, thus failing to work
for previously unseen nodes. Moreover, as it needs the whole
graph during training, for large networks, it might face scal-
ability issues. To address this issue, GraphSAGE [20] comes
with a sampling module. The fundamental idea behind the
sampling module is that instead of using all of the information
in the neighborhood, we may sample a subset of it for
propagation. In particular, it aggregates information by evenly
sampling a fixed-size set of neighbors rather than utilizing the
whole neighbor set. Moreover, GraphSAGE can be generalized
to unseen nodes by inductively learning the embedding for
each node. As a result, even if a new node comes into the
graph that was unseen during training, its neighbors may still
accurately represent it. Mathematically GraphSAGE can be
expressed as:

hiNv
= AGGi(h

i−1
u ,∀u ∈ Nv),

hiv = RELU(W i ◦ [hiNv
||hi−1v])

where the aggregation function is denoted by AGG. Aggre-
gation can be performed by applying to mean, pooling, and
LSTM aggregator [20]. Nv is the neighborhood of node v,
and RELU is a non-linear activation function.

In both GCN and GraphSAGE, the neighbor nodes are
aggregated to the central node with identical or prede-
fined weights that means all the nodes in the neighborhood
get similar importance. However, Graph Attention Network
(GAT) [26] assumes that the contribution/importance of all the
neighborhood nodes to represent a central node should not be
the same; instead, they should be learned during training. Thus
GAT modifies the GCN by injecting self-attention mechanism
into the propagation stage for each node as follows:

hiv = σ(
∑
u∈Nv

αi
vuW

ihi−1u)

where

αi
vu =

exp(leakyReLU(aT [W ihi−1v ||W ihui− 1])∑
k∈Nv

exp(leakyReLU(aT [W ihi−1v ||W ihi−1k])

where αi
vu is node u’s contribution to node v’s representation

in the layer ith, W is the weight matrix associated with each
node’s linear transformation, a is the weight vector of a single
layer feedforward NN, and Nv is the neighborhood of node v.
LeakyReLU is a nonlinear activation function. We individually
utilize GCN, GAT, and GraphSAGE to generate drug nodes’
embeddings of a fixed vector size.

Loss functions: To train and thus minimize the loss be-
tween ground truth label and predicted label, a graph-based
unsupervised loss function is designed where the loss function
promotes adjacent nodes to have comparable embeddings,
whereas nodes that are far away are separated in the projected
space. Using this method, the nodes will learn more and more
about their neighborhood. The graph-based loss function is
defined as follows:

JG(hu) = − log σ(hTuhv)−Q ◦ Ehn∼Pn(v) log σ(h
T
uhvn)

where u and v co-occur in a fixed-length random walk, and
vn are the negative samples that do not co-occur with u, σ
denotes an activation function, Pn denotes a negative sampling
distribution, and Q denotes the number of negative samples.

C. DDI Representation Creation

Once we obtain our drug embeddings from the GNNs, we
create our DDI representations. However, though we have a
certain amount of positive samples (i.e., sample with known
interactions) say ‘A’, we do not have negative samples (i.e.,
samples with no interactions) that, along with positive sam-
ples, are necessary to train the GNN model. To create the
necessary negative samples, we employ random selection from
all possible drug pairs without any known interaction. Next,
to create our DDI representations, we take the embeddings
from its respective involved drugs learned from the GNN and
concatenate them.

D. Learning with DDI features

After extracting drug pairs’ embeddings using GNN, our
objective is to predict whether two drugs interact or not.
Now comes the challenge of how to apply drug embeddings
and labeled data to the DDI prediction task. DDI prediction
can be accomplished by utilizing ML models that can assist
computer programs and models in actively learning, evolving,
and improving with experience. Any ML algorithm can be
utilized to detect the DDI interaction between drug pairs. The
ML models we experiment with are Logistic Regression (LR),
K-Nearest Neighbors (KNN), and feed-forward neural network
(NN). We choose the optimal model by selecting the model
that produces the highest accuracy results on the test data.

IV. EXPERIMENTAL RESULTS

A. Dataset

We create our dataset using DrugBank1. We select drugs that
met certain criteria, namely, drugs with the available following
information:
• A SMILES string,
• Known interactions with at least one other drug,
• Inclusion in the group of FDA-approved drugs.

The number of drugs meeting these criteria is 824, and
from among these drugs, we have a total of 96,751 known
positive drug drug interactions. After collecting the drug set,
we canonize each of the SMILES strings to ensure that
we work with the recognized standard for SMILES strings.
Unfortunately, the SMILES strings that contain the element
‘Platinum’ specifically are not recognized as “valid” codes. To
rectify this issue, we obtain these drugs’ canonized SMILES
strings from the PubChem database2 and replace these invalid
ones. We use RDKit3 python package for this process.

We apply the ESPF algorithm to the SMILES strings of our
824 drugs with different frequency thresholds. We observed
that when we use a lower threshold, we get many substruc-
tures, some of which may not be important, but when we use
a higher value, we get fewer sub-structures but may lose some
important ones. Based on our experiments, we select five as
the frequency threshold to continue with, which generates 741
unique sub-structures from our dataset.

For our Graph, we construct an edge between drugs if they
share a certain number (S-value) of sub-structures. We note
that if we use 1, we may connect many drugs that may not
be related and/or interact with each other. So we start with
an S-value of 2 and consider 2, 3 and 4. With the change of
S-value, the number of edges in the network also decreases,
as does the number of fully connected nodes, which is shown
in Table I. We construct three different graphs for our three
different S values, then individually apply the three different
GNN models on the graphs to get the vector representations
of drugs of size 128 each.

1https://go.drugbank.com
2https://pubmed.ncbi.nlm.nih.gov
3https://www.rdkit.org

TABLE I
THE NUMBER OF EDGES AND CONNECTED NODES BASED ON DIFFERENT

S-VALUES.

S-value Number of edges Number of connected nodes
2 22282 811
3 6025 721
4 2019 527

As noted above, in our dataset, we have 96,751 known
interactions among the 824 drugs. These known interactions
are positive samples. To generate negative samples, at first we
generate all the possible drug pair combinations that results
in a 339,076 possible interactions. Of these, 242,325 are
not known to have a positive interaction, and from these
interactions, we employ random selection to produce a total
of 96,751 negative samples to have an even split of training
data.

To get the representations of each sample pair (i.e., DDI),
we simply concatenate the embeddings of the respective
involved drugs, and at the end, we use a label bit 0 or 1
(i.e., ‘0’ for negative samples and ‘1’ for positive samples).
Thus, each sample’s positive or negative DDI is represented
by a vector of size 257. These representation vectors are used
as the features in ML (i.e., KNN, LR and, NN) models for
binary classification.

B. Baseline

As a baseline for our DDI representations, we use the
CASTER method (CM) outlined in the CASTER paper [23] to
create feature vectors for our dataset of positive and negative
DDIs. In this paper, each drug is represented by a vector of
the same length as the number of unique substructures created
from the dataset, with a 0/1 bit corresponding to the existence
of each of the unique structures in the drug. To create the
DDI representation, these vectors are then logically “and”ed
to create the representation for drug pairs. Formal definition
of Caster representation is given as follows [23].

Caster Representation: Let S = S1, S2, . . . , Sk is the set
of frequent substructures. Each drug pair (D,D′) is repre-
sented via k-dimensional vector t = [t1, . . . , tk] where ti = 1
if Si ∈ D and Si ∈ D′ and ti = 0 otherwise.

As our set of substructures consists of a total of 741 unique
substructures, these DDI representations are of size 742. We
use these vectors as the features of drug pairs to feed into
the same ML models that we feed our representations. Notice
that we only utilize the CASTER DDI representations and not
their ML models.

C. Parameter Settings

For each GNN model (GCN, GAT, and GraphSAGE), we
use a two-layer architecture with a ’mean’ aggregator in
GraphSAGE. The learning rate, batch size, and the number of
epochs are set to 0.7, 20, and 5, respectively. For the binary
classification, we used a 30% / 70% test/train split on the data.
We choose k = 5 for the KNN. The NN we use is a simple
feed-forward NN with 100 epochs. Both the KNN and the LR

models are generic without optimization of parameters. We
use these parameter settings for both our models and also for
baseline model.

D. Result Analysis

We perform experiments for our models along with three
machine learning algorithms; LR, KNN, NN, to see their effect
on the results. The performance of our models and baseline
methods are assessed using different accuracy measures: ac-
curacy, precision, recall, and F1-score.

We present the performance of our models in Table II
and Table III. First, in Table II, we present the detailed
performance results for different GNN models for S = 2,
which we select at the best performing of the S-values,
combined with the three distinct machine learning algorithms:
LR, KNN and NN. Our experimental results show that Graph-
SAGE outperforms other embedding methods (GCN, GAT)
for all measure and all machine learning methods. It gives the
best performance with NN method. The average Accuracy,
Precision, Recall, and F1-score of GraphSAGE with NN
are 82.39%, 82.19%, 82.83%, and 82.3%, respectively. The
average accuracy results for GraphSAGE with NN are around
82%, whereas the average accuracy of GCN and GAT with
different ML classifiers is below 80%. Regarding GraphSAGE,
inductive learning is used to generate the embedding for each
node where aggregation of a node’s neighborhood is used.
GraphSAGE has integrated sampling modules. To propagate
information through the network, they uniformly sample a
subset of the neighborhood information rather than using the
entire neighborhood. As a result, even if a new node hidden
during training appears in the graph, its neighbors may still
appropriately represent it. It produces representable embedding
for unseen nodes by aggregating adjacent nodes. It permits
node embedding to be used in domains with dynamic graphs,
where the graph topology is constantly changing.

According to the results, the NN yields better performance
for all GNN models compared to other machine learning
approaches. The reason for this performance could be that they
can learn and model non-linear and sophisticated connections.
Furthermore, after learning from the input data and their
connection, they may infer undiscovered associations on previ-
ously unseen data. Furthermore, neural networks can discover
hidden data connections without enforcing any established
association.

We perform another experiment to analyze the impact of S-
value (i.e., graph structure) on our model. We use GraphSAGE
as GNN model as it gives the best performance in previous
experiment. We present our results in Table III. From this
table, we see that the performance of our model decreases
with the increase of S-value. We find that an S-value of 2
yields the best results overall, with S = 3 following and S =
4 providing the worst performance. We hypothesize that the
main reason for this observed trend is that with the increase of
S, the number of connected nodes in the graph decreases and
we lose the relation between drugs that have similar functional
structure. For example, as given in Table I, for an S-value of

TABLE II
EXPERIMENTAL RESULTS FOR S = 2.

Embedding ML Accuracy Precision Recall F1
GAT LR 0.601 0.575 0.775 0.660
GAT KNN 0.656 0.643 0.703 0.671
GAT NN 0.775 0.759 0.807 0.782

GraphSAGE LR 0.617 0.611 0.644 0.627
GraphSAGE KNN 0.657 0.648 0.687 0.667
GraphSAGE NN 0.824 0.822 0.828 0.823

GCN LR 0.603 0.580 0.753 0.655
GCN KNN 0.657 0.644 0.702 0.672
GCN NN 0.774 0.772 0.792 0.779

TABLE III
EXPERIMENTAL RESULTS OF GRAPHSAGE FOR DIFFERENT S VALUES

S value ML Accuracy Precision Recall F1
2 LR 0.617 0.611 0.644 0.627
2 KNN 0.657 0.648 0.687 0.667
2 NN 0.824 0.822 0.828 0.823
3 LR 0.612 0.603 0.656 0.628
3 KNN 0.647 0.640 0.670 0.654
3 NN 0.735 0.739 0.727 0.733
4 LR 0.606 0.619 0.552 0.584
4 KNN 0.632 0.642 0.597 0.619
4 NN 0.685 0.696 0.659 0.677

Accuracy Precision Recall F1-score

0

0.2

0.4

0.6

0.8

1

S
c
o

re

CM+LR CM+KNN CM+NN GraphSAGE+LR GraphSAGE+KNN GraphSAGE+NN

Fig. 2. Performance comparison of the proposed graph based model with the baseline model using LR, KNN and NN machine learning model.

4, only 527 of the total 824 drugs have at least one edge to
another node, whereas for S-values of 2 and 3, 811 and 721
drugs, respectively, share at least one edge with other drugs.

Finally, we compare the performance of our model with
the baseline model in Figure 2 which uses the CASTER DDI
vector representations on the same ML models we run our
DDI representations. For our model we use GraphSAGE with
S = 2 as it gives the best performance. As we see from

the figure, our method outperforms the baseline method (CM)
significantly with all machine learning models in all accuracy
measures. Especially, for recall and F1 measures, the baseline
model has a much lower score than our model. Hence, the
chemical substructure is critical for DDI prediction, and our
usage of frequent chemical substructure information to denote
drug relationships in the form of the graph has enabled our
model to remain superior to baseline method.

V. CONCLUSION

In this paper, we propose a novel method to predict drug-
drug interactions using only the chemical structure of drugs
through their SMILES representations. First, we construct a
graph leveraging relations of drugs based on their common
frequent chemical substructures we extract from the SMILES
string. Utilizing three different GNN models, we generate
drug embeddings from the graph and concatenate the drug
embeddings to create features of the DDI pairs. Finally, we
apply different machine learning algorithms to the created drug
pair features to create DDI prediction models. We perform
extensive experiments to evaluate our model and compare our
results with a baseline model. According to our results, our
method gives more accurate results than the baseline model
using the CASTER DDI representations with GraphSage as
GNN, NN as machine learning and S = 2 as the relation
threshold.

For future work, we plan to extend our model to predict
exact side effect(s) caused by DDIs. We also plan improve
negative pair selection by learning from known non-interacting
pairs to generate a full set on negative DDIs instead of em-
ploying Random Selection, which we are currently doing. Last,
but not least, we plan to look into creation of a hypergraph
from our substructures and using HyperGraph Nueral Network
Learning.

ACKNOWLEDGMENT

This research was supported by Research Experience for
Undergraduates (REU) program through the National Science
Foundation grant no. 2050978.

REFERENCES

[1] J. Jia, F. Zhu, X. Ma, Z. Cao, Y. Li, and Y. Z. Chen, “Mechanisms
of drug combinations: interaction and network perspectives,” Nature
Reviews Drug Discovery, vol. 8, pp. 111–128, 2009.

[2] K. Han, E. E. Jeng, G. T. Hess, D. Morgens, A. Li, and M. C. Bassik,
“Synergistic drug combinations for cancer identified in a crispr screen
for pairwise genetic interactions,” Nature biotechnology, vol. 35, pp. 463
– 474, 2017.

[3] M. Bansal, J. Yang, C. Karan, M. P. Menden, J. C. Costello, H. Tang,
G. Xiao, Y. Li, J. D. Allen, R. Zhong, B. Chen, M. Kim, T. Wang, L. M.
Heiser, R. B. Realubit, M. Mattioli, M. J. Alvarez, Y. Shen, D. Gallahan,
D. Singer, J. Saez-Rodriguez, Y. Xie, G. Stolovitzky, and A. Califano,
“A community computational challenge to predict the activity of pairs
of compounds,” Nature Biotechnology, vol. 32, pp. 1213–1222, 2014.

[4] J. Strandell, A. Bate, M. Lindquist, and I. R. Edwards, “Drug-drug
interactions - a preventable patient safety issue?” British journal of
clinical pharmacology, vol. 65 1, pp. 144–6, 2008.

[5] S. Huang, R. Temple, D. Throckmorton, and L. Lesko, “Drug interaction
studies: Study design, data analysis, and implications for dosing and
labeling,” Clinical Pharmacology & Therapeutics, vol. 81, 2007.

[6] Y. Zheng, H. Peng, X. Zhang, Z. Zhao, J. Yin, and J. Li, “Predicting
adverse drug reactions of combined medication from heterogeneous
pharmacologic databases,” BMC Bioinformatics, vol. 19, 2018.

[7] S. Vilar, E. Uriarte, L. Santana, N. P. Tatonetti, and C. Friedman,
“Detection of drug-drug interactions by modeling interaction profile
fingerprints,” PLoS ONE, vol. 8, 2013.

[8] E. D. Kantor, C. D. Rehm, J. S. Haas, A. T. Chan, and E. L. Giovannucci,
“Trends in prescription drug use among adults in the united states from
1999-2012.” JAMA, vol. 314 17, pp. 1818–31, 2015.

[9] F. R. Ernst and A. J. Grizzle, “Drug-related morbidity and mortality:
updating the cost-of-illness model.” Journal of the American Pharma-
ceutical Association, vol. 41 2, pp. 192–9, 2001.

[10] X. Lin, Z. Quan, Z.-J. Wang, H. Huang, and X. Zeng, “A novel molecular
representation with bigru neural networks for learning atom,” Briefings
in bioinformatics, 2020.

[11] S. Vilar, R. Harpaz, E. Uriarte, L. Santana, R. Rabadán, and C. Friedman,
“Drug-drug interaction through molecular structure similarity analysis,”
Journal of the American Medical Informatics Association : JAMIA, vol.
19 6, pp. 1066–74, 2012.

[12] T. Ma, C. Xiao, J. Zhou, and F. Wang, “Drug similarity integration
through attentive multi-view graph auto-encoders,” in IJCAI, 2018.

[13] J. Y. Ryu, H. U. Kim, and S. Y. Lee, “Deep learning improves prediction
of drug–drug and drug–food interactions,” Proceedings of the National
Academy of Sciences, vol. 115, pp. E4304 – E4311, 2018.

[14] F. Tanvir, M. I. K. Islam, and E. Akbas, “Predicting drug-drug interac-
tions using meta-path based similarities,” in CIBCB, 2021.

[15] B. Jin, H. Yang, C. Xiao, P. Zhang, X. Wei, and F. Wang, “Multitask
dyadic prediction and its application in prediction of adverse drug-drug
interaction,” in AAAI, 2017.

[16] X. Chu, Y. Lin, Y. Wang, L. Wang, J. Wang, and J. Gao, “Mlrda: A
multi-task semi-supervised learning framework for drug-drug interaction
prediction,” in IJCAI, 2019.

[17] Z. Quan, X. Lin, Z.-J. Wang, Y. Liu, F. Wang, and K. Li, “A system
for learning atoms based on long short-term memory recurrent neural
networks,” 2018 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pp. 728–733, 2018.

[18] Y. Le, Z.-J. Wang, Z. Quan, J. He, and B. Yao, “Acv-tree: A new method
for sentence similarity modeling,” in IJCAI, 2018.

[19] Z. Quan, Z.-J. Wang, Y. Le, B. Yao, K. Li, and J. Yin, “An efficient
framework for sentence similarity modeling,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 27, pp. 853–865, 2019.

[20] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017, pp. 1025–
1035.

[21] I. Abdelaziz, A. Fokoue, O. Hassanzadeh, P. Zhang, and M. Sadoghi,
“Large-scale structural and textual similarity-based mining of knowledge
graph to predict drug-drug interactions,” J. Web Semant., vol. 44, pp.
104–117, 2017.

[22] S. Jaeger, S. Fulle, and S. Turk, “Mol2vec: Unsupervised machine learn-
ing approach with chemical intuition,” Journal of chemical information
and modeling, vol. 58 1, pp. 27–35, 2018.

[23] K. Huang, C. Xiao, T. N. Hoang, L. Glass, and J. Sun, “Caster:
Predicting drug interactions with chemical substructure representation,”
in AAAI, 2020.

[24] L. G. J. S. Kexin Huang, Cao Xiao, “Explainable substructure partition
fingerprint for protein, drug, and more,” NeurIPS Learning Meaningful
Representation of Life Workshop, 2019.

[25] T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” ArXiv, vol. abs/1609.02907, 2017.

[26] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio’, and
Y. Bengio, “Graph attention networks,” ArXiv, vol. abs/1710.10903,
2018.

[27] A. Gottlieb, G. Y. Stein, Y. Oron, E. Ruppin, and R. Sharan, “Indi:
a computational framework for inferring drug interactions and their
associated recommendations,” Molecular Systems Biology, vol. 8, pp.
592 – 592, 2012.

[28] P. Zhang, F. Wang, J. Hu, and R. Sorrentino, “Label propagation
prediction of drug-drug interactions based on clinical side effects,”
Scientific Reports, vol. 5, 2015.

[29] B. Davazdahemami and D. Delen, “A chronological pharmacovigilance
network analytics approach for predicting adverse drug events,” Journal
of the American Medical Informatics Association, vol. 25, p. 1311–1321,
2018.

[30] Y. Zheng, H. Peng, X. Zhang, Z. Zhao, X. Gao, and J. Li, “Ddi-pulearn:
a positive-unlabeled learning method for large-scale prediction of drug-
drug interactions,” BMC Bioinformatics, vol. 20, 2019.

[31] R. Masumshah, R. Aghdam, and C. Eslahchi, “A neural network-based
method for polypharmacy side effects prediction,” BMC Bioinformatics,
vol. 22, 2021.

[32] G. K. O. Crichton, Y. Guo, S. Pyysalo, and A. Korhonen, “Neural
networks for link prediction in realistic biomedical graphs: a multi-
dimensional evaluation of graph embedding-based approaches,” BMC
Bioinformatics, vol. 19, 2018.

[33] M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy
side effects with graph convolutional networks,” Bioinform.,

vol. 34, no. 13, pp. i457–i466, 2018. [Online]. Available:
https://doi.org/10.1093/bioinformatics/bty294

[34] X. Lin, Z. Quan, Z. Wang, T. Ma, and X. Zeng, “Kgnn: Knowledge
graph neural network for drug-drug interaction prediction,” in IJCAI,
2020.

[35] A. Deac, Y.-H. Huang, P. Velickovic, P. Lio’, and J. Tang, “Drug-
drug adverse effect prediction with graph co-attention,” ArXiv, vol.
abs/1905.00534, 2019.

[36] System, “System, D. C. I. 2015. Smiles tutorial.”
[37] R. B. Silverman and M. W. Holladay, The organic chemistry of drug

design and drug action. Academic press, 2014.
[38] Z. Zhang, P. Cui, and W. Zhu, “Deep Learning on Graphs: A Survey,”

IEEE Transactions on Knowledge and Data Engineering, 2020.
[39] Q. Xie, J. Huang, P. Du, M. Peng, and J.-Y. Nie, “Graph topic

neural network for document representation,” in Proceedings of the Web
Conference 2021, 2021, pp. 3055–3065.

[40] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning. PMLR, 2017, pp. 1263–1272.

