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Abstract—Drug-drug interaction (DDI) indicates the event
where a particular drug’s desired course of action is modified
when taken together with other drugs (s). DDIs may hamper,
enhance, or reduce the expected effect of either drug or, at the
worst possible scenario, cause an adverse side effect. While it is
crucial to identify drug-drug interactions, it is quite impossible
to detect all possible DDIs for a new drug during the clinical
trial. Therefore, many computational methods are proposed for
this task. In this paper, we propose a novel method, HIN-DDI
for discovering DDIs. This method considers drugs and other
biomedical entities like proteins, pathways, and side effects, for
DDI prediction. We design a heterogeneous information network
(HIN) to model relations between these entities. Afterward, we
extract the rich semantic relationships among these entities using
different meta-path-based topological features. An extensive set
of features are fed to different classifiers for DDI prediction.
Moreover, we run extensive experiments to compare and evaluate
the effectiveness of HIN-DDI with other methods. Results exhibit
that HIN-DDI is quite effective in predicting new drugs as well
as existing drugs. Unlike existing works, HIN-DDI can predict
new drugs, and more importantly, it can impressively outmatch
baseline methods by up to 63%.

Index Terms—Drug-drug interaction, Link prediction, Meta-
path, Similarity-based, Topological features

I. INTRODUCTION

Adverse drug reactions are becoming a significant health
concern in the USA. One-third of adverse drug reactions
interactions occur due to drug-drug interactions (DDI), which
refers to an event when the desired effect of one drug is altered
when taken together with multiple drugs.

Before entering the market, each drug has to undergo tests
during drug development and clinical trials. However, per-
forming experiments for many drugs is impractical due to the
massive amount of possible drug combinations and various co-
morbidities. Nowadays, different computational methods have
been developed to predict DDIs. Similarity-based approaches
presume that drugs that possess similar characteristics interact
with the same drug. Moreover, biomedical literature, FAERS,
and medical records are used for DDI prediction. However,
these prior works have some limitations as follows:

● Utilizing fewer data sources: Most previous studies
have focused on fewer or single data sources for pre-
dicting DDIs. However, one data source may not contain
complete information for all drugs. To accurately predict

possible DDIs, we need to incorporate multiple data
sources [1], [2].

● Imbalanced dataset: Drug-drug interaction data is im-
balanced and skewed, which we need to consider in the
experiments [1], [3].

● Lack of predicting for new drugs: Most previous works
do not assess their model’s capability to predict new
drugs. Model tested on current drugs may not give the
same effectiveness for new drugs [1], [3].

In this work, we propose a novel DDI prediction model,
HIN-DDI, to overcome these limitations. First, in HIN-DDI,
we integrate rich drug-centric interactions from various data
sources thanks to the network structure. Networks, often repre-
senting real-life systems, are graphs that capture the complex
structure of interactions between related objects. In a network,
vertices represent the objects, and edges represent the relations
between objects. Networks exist in multiple disciplines such
as social networks [4], [5], citation networks [6], [7], and
biological networks [8].

Next, to model drugs and their interaction with other
biomedical entities, we create a heterogeneous information
network (HIN), which comprises different types of entities
and relations. Lastly, meta-paths on the HIN, which are used to
capture the meta-structure of HIN, are used to measure higher-
level similarity and relation among two drugs. After creating
different meta-paths, topological features are extracted using
meta-paths. Finally, few classifiers are trained utilizing these
topological features for finding out the accurate model for our
features. The main contributions of HIN-DDI are as follows:

● Combining multiple data sources: Various data sources
are incorporated to generate complete, enriched drug-
based interaction data. While focusing on limited sources
will not provide an accurate representation of drug inter-
actions, blending more features will prevent this issue.

● Incorporating drug-based interactions on HIN: From
multiple data sources, drugs and their interactions with
other entities are represented by a heterogeneous informa-
tion network. In doing so, we consider drugs’ interaction
with other biomedical entities like proteins, diseases,
and pathways. In addition to that, inhabitant species
of proteins and pathway subjects are also considered
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in the drugs’ interaction with proteins and pathways,
respectively.

● Meta-path topological features: Meta-path is used in
HIN for measuring connection among entities. We create
several meta-paths that indicate different relations be-
tween drug pairs. We measure topological features based
on constructed meta-paths and utilize these features for
the prediction task.

● Addressing imbalanced and skewed data distribu-
tion: This model addresses imbalanced data distribution
through a set of controlled experiments. We determine
the actual percentage of interacting drug pairs among all
drug pairs through experiments between 30% and 50%.

● Prediction of new drugs: Experimental results demon-
strate that our model can predict drugs with no known
interactions.

● Evaluation with different accuracy measures: We per-
form extensive experiments acknowledging imbalanced
data distribution and utilizing appropriate F1-score, Re-
call, Precision, AUROC, and AUPR.

The structure of this paper is outlined as follows. Fur-
thermore, we analyze related works in Section II. Section
III describes how data from various sources are integrated
and explains our methodology. Moreover, we describe our
experiments in Section IV. Finally, we conclude in Section
V.

II. RELATED WORKS

Different computational methods have been applied to pre-
dicting DDIs. We will discuss similarity-based and neural
network-based approaches.

A. Similarity-based Approaches
As per prior studies, similarity-based approaches have

proven effective in predicting drug-drug interactions (DDIs).
These methods operate under the assumption that similar
drugs will interact with the same drugs. Different research
works [9], [10] have employed different numbers and types
of similarity measures for predicting DDIs. Another research
work worthy of mention is [1], which incorporated various
data sources to compute numerous local and global similarity
measures among drugs. Furthermore, they acknowledged that
their dataset is imbalanced and skewed and devised several
experiments to address these issues. However, most of these
approaches consider limited datasets and fewer drug-centric
interactions.

B. Neural Network-based Approaches
Recently, a growing number of research based on neural

networks, especially graph neural networks, predict drug-
related interactions. Graph neural network-based approaches
construct knowledge graphs based on drug-centric interactions.
Afterward, they employ a neural network to extract relations
among drugs. [2] constructed knowledge graph based on
protein-protein interaction, drug-drug interaction, and drug-
protein interaction. Afterward, they developed a graph con-
volutional network consisting of encoding, decoding, and

model training phases for DDI prediction. [11] utilized GNN
to learn drugs and their neighborhood embedding from the
knowledge graph and DDI. Finally, they predict potential DDIs
using binary classification. [12] predicts DDI leveraging the
molecular structure of drugs and type of side effects. Drugs are
represented as nodes comprising of atoms, with bonds among
them represented as edges. Internal messages are sent to each
other by nodes/atoms. Furthermore, atoms of different drugs
can communicate with one another via outer messages. They
calculated an attentional co-efficient for each atom pair, where
each atom belongs to a different drug.

Meanwhile, [13] addressed a similar problem, drug-target
prediction, using heterogeneous information network and
meta-path topological features. Meta-path has been widely
researched and is used to demonstrate relation among entities.
It is used in a wide range of applications including the study
of research publication networks [14], recommendation [15],
multi-network link prediction [16]–[18], co-authorship pre-
diction [19], and information graph-based document analy-
sis [20], [21]. Additionally, meta-paths and similar structures,
namely meta-graphs and meta-structures, have been used to
detect opioid addicts from social media [22]–[24]. Regarding
the prediction of DTIs, [13] constructed a network comprising
of drugs, different types of biomedical entities, and interaction
among them. Then, they generated meta-paths for computing
similarity among drugs. In contrast to existing works, experi-
ments were performed to address the issue of the dataset being
imbalanced and predict new DTIs. In addition to that, they
used a feature ranking algorithm to select important features.

However, meta-path-based similarity has not been applied
to predict DDIs. Though, HIN has been utilized to predict
DDIs based on similarity among drugs [25]. Nevertheless,
our proposed method, HIN-DDI, integrates various datasets
comprising drug-based interactions. As a result, our dataset
consists of numerous drugs and drug-centric interactions,
which addresses prior studies’ limitations. Furthermore, we
have utilized meta-path to measure relations among drugs.

III. METHOD

In this section, we present our model. The system archi-
tecture of HIN-DDI is outlined in Figure 1. Our proposed
model HIN-DDI for drug-drug interaction prediction, consists
of four steps. We explain them in the following sections.

A. Data Integration

In this section, we will discuss how we have integrated
data into our model. We extract interaction data among dif-
ferent node types from many publicly available datasets. For
integrating all these datasets, first, we should understand the
complex interactions of bio-molecules and events to detect
DDI successfully. Since there are different types of drugs,
they can interact with different entities that result in different
events. Types of entities in our datasets are drugs, proteins,
pathways, chemical substructures, ATC code, and diseases.
We also have different interactions between these entities,
such as having the same anatomical group in ATC code,



Fig. 1: System Architecture of HIN-DDI

having the same anatomical and therapeutic subgroups in
ATC code, and indications/side effects. However, we need to
meet specific requirements for a complete, accurate, and rich
network. Firstly, appropriate columns or attributes in a dataset
for a particular entity must be identified. This task will help
in constructing relations among different entities. Secondly,
data for a distinct entity may be inconsistent in different
datasets. For complete and accurate network construction, we
must use one single identifier for an entity. Thirdly, one entity
instance can be connected to multiple instances of another
entity. We can pre-process data to accommodate one entity
instance and concatenate multiple entity instances in a single
row for efficiency.

Dataset: We construct our network by integrating a wide
range of data sources, including DrugBank 1, KEGG 2, and
DEB2 3 (it combines DrugBank, MedLine, MedLinePlus,
Sider2, and NDRFT) and TWOSIDES. We have uploaded
our pre-processed datasets in the following GitHub repository:
https://github.com/farhantanvir1/HIN-DDI.

In our combined dataset, we have the following interactions.
● Drug-Protein Interactions: Different drugs target differ-

ent proteins in the human body, known as the target
protein, and make positive, therapeutic changes. Inter-
action data among target proteins, species that carry
the protein, and drugs are obtained from DrugBank. It
contains relational data among 1266 target proteins, 89
species, and 481 drugs.

● Drug-Pathway Interactions: The pathway of drugs con-
veys valuable information about the mechanism of action
and metabolism of drugs. Additionally, it bears informa-
tion on pathway subjects, i.e., disease, protein, physio-
logical. Interaction data among drug pathways, subjects,
and drugs are obtained from DrugBank. It consists of
relational data among 481 drugs, 48703 pathways, and
seven pathway subjects.

● Drug-Indication Interactions and Side effect data: Re-
lational data among drugs, indications, and side effects

1https://go.drugbank.com
2https://www.kegg.jp
3https://www.vumc.org/cpm/deb2

are obtained from DEB2, a publicly available dataset
containing an association among 481 drugs and 1602 indi-
cation/side effect instances. DEB2 integrates five datasets-
DrugBank, MedLine, Med-LinePlus, Sider2, and NDRFT.

● The chemical substructure of Drugs: A drug’s physio-
chemical characteristics are determined by its chemical
substructure. Each drug can be encoded by the simplified
molecular-input line-entry system (SMILES). We extract
SMILES string of 481 drugs from DrugBank and KEGG.
Then, we convert the SMILES string into MACCS keys,
a binary fingerprint consisting of 167 keys. Every bit po-
sition corresponds to a chemical substructure, indicating
its presence or not

● ATC code of drugs: The Anatomical Therapeutic Chemi-
cal (ATC) classification system classifies drugs into three
categories: operating organs and chemical, therapeutic,
and pharmacological characteristics. ATC codes of drugs
are obtained from DrugBank and KEGG.

● Drug-drug interactions: TWOSIDES database contains
information on drug-drug interactions among 481 drugs.
Usually, this database is developed by collecting adverse
drug effect reports from doctors, patients, and healthcare
professionals.

B. HIN Construction

This section explains how we create a heterogeneous infor-
mation network to integrate multiple, distinctive entities and
their relations.

Definition 1 (Heterogeneous information network): A het-
erogeneous information network (HIN) is defined as a graph
G = (V,E) with an entity type mapping φ: V → A and a
relation type mapping ψ : ε → R, where V denotes the entity
set and E is the relation set, A denotes the entity type set
and R is the relation type set and the number of entity types
∣A∣ > 1 or the number of relation type ∣R∣ > 1.

The network schema of HIN-DDI is denoted in the Net-
work Construction part of Figure 1. We utilize datasets de-
scribed in subsection III-A to construct relations among these
entities, which are are explained elaborately below.



● I1: T matrix represents the drug-target protein interaction
where each element ti,j states whether drug i targets
protein j.

● I2: R matrix represents which species possess which
protein where each element ri,j states whether target
protein i can be found in species j.

● I3: W matrix represents the relationship among drugs
and pathways where each element wi,j describes whether
pathway j is responsible for drug i.

● I4: The type of activities of the drug pathway may vary,
such as metabolic, protein, and drug action. B matrix
describes the association of pathway subjects with path-
ways, where each element bi,j shows whether pathway
subject j is related to pathway i.

● I5: Ind matrix depicts drug-indication relation where
each element indi,j shows whether drug i cures indication
j.

● I6: SE matrix represents drug-side effect relation where
each element sei,j describes whether drug i causes side
effect j.

● I7: H matrix outlines drug-chemical substructure relation
where each element hi,j refers to whether drug i have
chemical substructure j.

● I8: AS matrix demonstrates drug-anatomical subgroup
of ATC code relation where each element asi,j refers to
whether drug i affects organ or system j.

● I9: ATS matrix shows the interaction between drugs and
the anatomical and therapeutic subgroup of ATC codes.
In the matrix, each element atsi,j refers to whether a
specific organ and its corresponding therapeutic subgroup
j is impacted by drug i.

● I10: ATPS matrix illustrates the relation among drugs
and anatomical, therapeutic, and pharmacological sub-
group of ATC code.Each element atpsi,j refers to
whether drug i acts on a particular organ and possesses its
corresponding therapeutic and pharmacological subgroup
j.

C. Meta-path Based Topological Features

After we construct the HIN, we utilize meta-paths to extract
features for depicting diverse entities and relations. Meta-
paths for HIN-DDI are depicted in Figure 2. Meta-paths are
used in HINs for measuring relations and similarities between
entities. Moreover, meta-paths are represented in the form of
a commuting matrix.

Definition 2 (Meta-path): A meta-path P is a path on the
network schema diagram TG = (A,R), and is represented
in the shape of A1

R1
Ð→ A2

R2
Ð→ ⋯

Rl
Ð→ AL+1, describing a

composite relationship R = R1○R2○⋯○R between entities A1

and AL+1, where ○ denotes composition operator association,
and length of P is L.

Definition 3 (Commuting matrix): Given a network G, a
commuting matrix MP for a meta-path P = (A1A2⋯AL+1) is
defined as MP = (GA1A2GA2A3⋯ GAlAL+1

), where GAiAj

is the adjacency matrix between types Ai and Aj . MP (i, j)

Fig. 2: Meta-paths used in HIN-DDI. Symbols used in this
figure are abbreviated forms defined in Figure 1

represents the number of path instances between entity xi ∈
A1 and entity yi ∈ AL+1 under meta-path P .
For example, a meta-path between two drugs can be created as

drug
target
ÐÐÐ→ protein

resides
ÐÐÐÐ→ species

residesT

ÐÐÐÐÐ→ protein
targetT

ÐÐÐÐ→

drug. Based on the example mentioned above of meta-path,
the commuting matrix for this meta-path is computed by T *
PS * PST * TT , where T is the adjacency matrix between
drugs and target protein; PS is the adjacency matrix between
protein and species. Based on ten interactions described in the
previous subsection, we construct seven meta-paths and their
commuting matrices for measuring similarity among drugs.
For example, meta-path PID 1 measures the relation between
two drugs based on drugs targeting the same protein in the
same species.

After constructing meta-paths, we extract topological fea-
tures of drug pairs using these meta-paths. Extracted features
are later used for predicting interaction between drug pairs.
With meta-paths, while predicting interaction, we take the
structure and connectivity of the network into account. We uti-
lize four topological features of meta paths on heterogeneous
networks. The features are stated below.

● Path count: The number of path counts calculates the
number of path instances between two entities for a
meta-path R referred to as PCR. The path count can be
determined by the commuting matrix that is connected
with each meta-path relationship.

● Normalized path count: The normalized path count
discounts the number of paths between two network
entities through their total communication and determines
the paths between two network entities. It is defined as

NPCR(ai, aj) =
PCR(ai, aj) + PCR−1(aj , ai)

PCR(ai, ○) + PCR(○, aj)
. (1)



In (1), R−1 denotes the inverse relationship of R,
PCR(ai, ○) denotes the total number of paths beginning
with ai after R, and PCR(○, aj) denotes the total num-
ber of paths ending with aj after R. PCR(ai, ○) and
PCR(○, aj) can be interpreted as degrees of ai and aj
in the network relative to R and R−1.

● Random walk based normalized path count: The
random measure of the walk along a meta-path, which
is a generalized version of PropFlow, is specified as

RWR(ai, aj) =
PCR(ai, aj)

PCR(ai, ○)
. (2)

● Symmetric random walk based normalized path
count: The symmetric random walk takes the random
two-way walk and describes it as

SRWR(ai, aj) = RWR(ai, aj) +RWR−1(aj , ai). (3)

D. Learning on HIN

After extracting topological features with each meta paths
for drug pairs’ relations, our objective is to predict whether
two drugs interact or not. To accomplish this, we can use any
machine learning (ML) algorithm to learn the DDI interaction
between drug pairs. We experiment with various ML models,
including Support Vector Machine (SVM), Logistic regression,
Random Forest, and Neural Network. Our purpose is to
find out the appropriate ML model capable of predicting
DDIs based on our extensive meta-path topological features.
Moreover, to find out the actual percentage of DDIs in our
imbalanced data, we modify our training and testing data.
We perform experiments with various percentages of DDI
prevalence in both training and testing data.

IV. EXPERIMENT

Performance of HIN-DDI and baseline methods are as-
sessed using different accuracy measures, which are F1-score,
Recall, Precision, AUROC, and AUPR.

In addition to the testing on existing drugs, we do exper-
iment for new drugs. We split our dataset to predict new
drugs so that 20% of drugs do not appear in the training set
and only appear in the testing set. In this case, our testing
set consists of 20% of drugs not featuring in the training
set. Instead of hiding 20% of the drug-drug interactions [9],
[10], 20% of the drugs, which occur as the first component
of a pair of drugs in the set DrugPairsHIN − DDI of
all recognized drug pairs are concealed. Therefore, these
hidden drugs can be considered as newly developed drugs.
Drugtest comprises hidden drugs for which no DDIs are
identified during training. Information for these drugs will only
be revealed during testing. DrugPairsHIN −DDI can be
categorized into two sets, DrugPairsHIN −DDItrain and
DrugPairsHIN −DDItest. DrugPairsHIN −DDItrain
comprises drug pairs intended to be used in training. As a
result, each pair of DrugPairsHIN − DDItrain belongs
to DrugPairsHIN −DDI , but neither of them belongs to

Drugtest. On the other hand, DrugPairsHIN −DDItest is
constructed for testing, and so, one drug in each pair belongs
to Drugtest. Drug pairs of DrugPairsHIN −DDItest must
belong to DrugPairsHIN −DDI .

We perform experiments with different machine learning
algorithms to see their effect on the results and select the
best learning algorithm for our model. We present the detailed
results for four different machine learning algorithms: SVM,
Logistic regression, Random Forest, and Neural Network in
Table I. According to the results, while the neural network can
generate extraordinary accuracy measures compared to ma-
chine learning methods, random forest produces almost similar
results to the neural network. Regarding neural networks,
Non-linear and sophisticated relationships can be learned
and modelled by these. Additionally, these can infer unseen
relationships on unseen data after learning from the input
data and their relationships. Moreover, neural networks have
the potential to learn hidden relationships in the data without
enforcing any fixed associations in the data. Since the neural
network achieves more nuanced results on our dataset, we
perform further experiments with neural network.

Also, we acquire results of our baseline methods for both
existing and new drugs and then evaluate these results against
that of HIN-DDI. In addition, we calculate the predictive
capability of various features and demonstrate how they influ-
ence system performance. Details of experiments and results
are discussed in the following sections.

A. Comparison with Baseline Methods

We perceive the issue of predicting drug-drug interactions
as similar to a link prediction task. We use 80% of drug data
for model training, and 20% of drug data is preserved for
testing. The performance of our model is then compared with
the following approaches:

● Concatenated drug features (ConDF): This approach
generates a feature vector for each drug, using Prin-
cipal component analysis (PCA) representations of the
drug-target protein interaction matrix, drug-chemical sub-
structure matrix, drug-anatomical, the therapeutic and
pharmacological subgroup of ATC code matrix, drug-
pathway matrix, drug-indication matrix, and drug-side
effect matrix. Drug pairs are represented by concatenating
the corresponding vectors of the drug, and these are used
as an input to neural network models, which then predict
whether drug pairs interact.

● Embedding-based Method: We use two different graph
embedding methods: DeepWalk [26] and Node2Vec [27].
DeepWalk is a 2-phase graph embedding technique.
It learns d-dimensional node embedding by generating
random walks of fixed length from all vertices of a
graph. Node2Vec provides an upgrade to DeepWalk [26].
Node2Vec incorporates DFS-like and BFS-like neighbor-
hood discovery with return parameter p and in-out param-
eter q. First, we have learned the embeddings of drugs
using DeepWalk. After that, generated embeddings of
drugs are concatenated to represent pairs of the drug. We



TABLE I: Performance comparisons of different machine learning methods and neural network (at 50% DDI prevalence)

Existing Drugs New Drugs
F1 score Recall Precision AUROC AUPR F1 score Recall Precision AUROC AUPR

SVM 53.08 41.89 72.46 62.98 59.41 33.26 21.11 78.38 57.64 55.99
Logistic Regression 58.53 50.55 69.51 64.19 59.86 43.47 30.76 74.09 60 57.41

Random Forest 73.72 74.36 73.09 73.49 67.17 63.6 58.2 70.1 66.69 61.7
Neural network 74.91 74.02 74.15 74.05 66.98 63.61 64.54 66.21 64.54 59.63

TABLE II: Comparison with baseline methods (with 50% DDI prevalence at training and testing data)

Existing Drugs New Drugs
F1 score Recall Precision AUROC AUPR F1 score Recall Precision AUROC AUPR

HIN-DDI 74.91 74.02 74.15 74.05 66.98 63.61 64.54 66.21 64.54 59.63
ConDF 70.45 69.47 70.56 70.71 64.45 57 58.26 59.35 58.26 54.9

Node2vec 45.92 51.48 50.26 50.27 50.68 32.92 31.52 47.58 32.11 42.68
DeepWalk 46.54 44.92 50.35 45.63 50.47 34.20 39.57 40.82 38.19 41.94

have set the dimension of drug embedding to d= 64. After
concatenating features of two drugs, the representation
size of drug pairs is 128. Parameters of the methods are
given as the number of random walks γ = 40, walk length
t =10, and window size w=10. p and q in Node2Vec both
are set to 1.

In Table II, results for each baseline method and HIN-DDI
at 50% DDI prevalence are illustrated. From the results in
the table, we observe that HIN-DDI outperforms all base-
line methods by a large margin. Meta-paths are utilized
in determining meaningful interactions among entities. So,
representations obtained from meta-paths on the constructed
HIN allow the model to extract semantic relations among drugs
accurately. Since other methods do not adopt meta-paths, they
are unable to retrieve proper interactions among drugs.

B. Imbalanced Data Analysis

Prior works assumed that drug-drug interaction data is bal-
anced, and the ratio of positive to negative/unlabelled examples
is 1:1. To contradict that, we consider DDI prevalence in our
data ranging from 30% to 50% [30, 40, 50]. DDI prevalence
refers to the percentage of DDI in a data set. With a given DDI
prevalence in training data, we generate accuracy measures for
testing data with a given DDI prevalence. In addition to that,
we consider varying DDI prevalence in training and testing
data for baseline methods to compare results.

Our experimental results show that HIN-DDI outperforms
other methods in all cases of varying DDI prevalence in the
training and testing set. Detailed comparisons of HIN-DDI
and baseline methods are shown in Figure 3. For the training
set with DDI prevalence ranging from 30 to 50%, our average
F1-score is 72.09% for the testing set with DDI prevalence
ranging from 30 to 50%. The average Recall, Precision,
AUROC, and AUPR score of HIN-DDI are 70.33, 73.07,
70.22%, and 65.35%, respectively, for varying DDI prevalence
in training and testing data.

Similar to our experiment for existing drugs, we consider
varying DDI prevalence in training and testing set to predict

new drugs. Detailed results are outlined in Figure 4. Exper-
imental results outline that HIN-DDI can achieve effective
accuracy measures when it is tasked to predict for newly
developed drugs. For DDI prevalence ranging from 30% to
50% in training and testing data, our average F1-score, Recall,
Precision, AUROC, and AUPR score are 60.28%, 61.13%,
67.96, 61.72, and 57.54%.

For predicting both existing and new drugs, HIN-DDI ex-
ceeds baselines in all accuracy measures regardless of the DDI
prevalence in training and testing data. Moreover, it is worthy
of mention that HIN-DDI achieves better accuracy results
than the best baseline method (Concatenated drug features) by
almost 11%. So, the mixture of meta-path topological features
is superior to baseline approaches, even when predictions are
made on drugs lacking known interactions.

C. Detailed Analysis on Meta-paths

We compute four kinds of topological features-path count,
normalized path count, random walk, and symmetric random
walk. Furthermore, we assess the impact of each type of
topological feature on HIN-DDI performance. According to
our experiments, all types of topological features produce
similar accuracy measures. Combining all types of topological
features generate far superior evaluation metrics. However,
excluding any kind of topological feature except path count
has a limited effect on HIN-DDI’s predictive efficiency.

We attempt to analyze the impact of each feature on
HIN-DDI by performing extensive experiments. After analyz-
ing the results, we consider drug targets, pathways, chemical
sub-structures, and drug side effects as core drug features
(CDF). Then, we assess the results of adding multiple features
to CDF. Table III outlines the result of these combinations.
It can be deduced that these combinations differ slightly in
generating accuracy measures. The use of more drug features
does not enhance the efficiency of predictions. The results
indicate that the drug properties, including ATC code and
indication, play a minor role in DDI predictions, while the
core drug properties determine the prediction efficiency.
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Fig. 3: Evaluating HIN-DDI performance by comparing with baseline methods for existing drugs scenario. For each figure,
the x-axis refers to the percentage of DDI prevalence in training and testing data
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Fig. 4: Evaluating HIN-DDI performance by comparing with baseline methods for new drugs scenario. For each figure, the
x-axis refers to the percentage of DDI prevalence in training and testing data

V. CONCLUSION

In this paper, we propose HIN-DDI, a novel method to
predict drug-drug interactions. Firstly, we construct a het-
erogeneous information network to leverage different entities
and their diverse relations. After that, we employ meta-path
topological features to denote interaction and relation among
drugs. We apply a neural network in HIN to facilitate the pre-
diction of DDIs. Finally, we perform extensive experiments to
demonstrate that our method exceeds other baseline methods
and addresses existing shortcomings in other works. Our main
results are summarized below:

● Prior works performed extensive experiments considering
this balanced data distribution. Our experimental results
exhibit that our method can predict superbly in the case of
imbalanced datasets. The results illustrate the significance

and usefulness of the methodology we suggest for treating
skewed datasets.

● We outline that the superior prediction efficiency of
HIN-DDI stems from a few notable meta-path topolog-
ical features. Meta-path-based topological features can
predict DDIs effectively.

● HIN-DDI performs superior results to best performing
baseline methods by a margin of 10% for current drugs
and 11% for new drugs. For existing drugs, it surpasses
baseline methods by a remarkable 63%.

● The predictive ability of HIN-DDI for new drugs is close
to its result for existing drugs’ scenarios. It overcomes
existing methods’ inability to predict in the case of new
drugs.

This study can be extended in various directions. Repre-
sentation learning is known to be very effective in detecting



TABLE III: Combining features to HIN-DDI at 50 percent DDI prevalence at training and testing

F1-score Recall Precision AUROC AUPR

1 feature

Target protein 62.15 63.08 62.91 62.47 58.11
Side effect 66.16 66.98 66.01 66.47 61.13
Indication 46.08 55.37 67.27 55.37 55.61
Pathway 61.78 62.95 63.97 62.49 58.68

ATC Code 48.19 56.24 66.5 56.24 56.15
Chemical substructure 60.61 61.17 60.77 60.51 57.11

Combining 4 features CDF 71.42 71.66 70.34 71.33 65.4

Combining 5 features CDF + Indication 72.2 71.98 73.01 72.59 66.21
CDF + ATC Code 72.31 72.22 73.36 72.92 66.59

relationships among biomedical entities [28]. So, future work
might accommodate representation learning using a hetero-
geneous graph neural network. Although meta-path is quite
efficient in computing similarity among entities, it can fail
to portray complicated relations. Meta-graph is known to be
capable of depicting these relations [23]. We can utilize
meta-graphs to represent these relationships and evaluate the
method.
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