DDI Prediction via Heterogeneous Graph Attention Networks

Publication
BioKDD 2022

Polypharmacy, defined as the use of multiple drugs together, is a standard treatment method, especially for severe and chronic diseases. However, using multiple drugs together may cause interactions between drugs. Drug-drug interaction (DDI) is the activity that occurs when the impact of one drug changes when combined with another. DDIs may obstruct, increase, or decrease the intended effect of either drug or, in the worst-case scenario, create adverse side effects. While it is critical to detect DDIs on time, it is timeconsuming and expensive to identify them in clinical trials due to their short duration and many possible drug pairs to be considered for testing. As a result, computational methods are needed for predicting DDIs. In this paper, we present a novel heterogeneous graph attention model, HAN-DDI to predict drug-drug interactions. We create a heterogeneous network of drugs with different biological entities. Then, we develop a heterogeneous graph attention network to learn DDIs using relations of drugs with other entities. It consists of an attention-based heterogeneous graph node encoder for obtaining drug node representations and a decoder for predicting drug-drug interactions. Further, we utilize comprehensive experiments to evaluate of our model and to compare it with state-of-the-art models. Experimental results show that our proposed method, HAN-DDI, outperforms the baselines significantly and accurately predicts DDIs, even for new drugs.